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Abstract: Under the squared error loss plus linear cost of sampling, we revisit the minimum risk point estimation
(MRPE) problem for an unknown normal mean µ when the variance σ2 also remains unknown. We begin by
defining a new class of purely sequential MRPE methodologies based on a general estimator Wn for σ satisfying
a set of conditions in proposing the requisite stopping boundary. A number of desirable asymptotic first-order and
second-order properties associated with this new class of estimation methodologies have been investigated. After
such general considerations, we include a number of substantial illustrations where we respectively substitute ap-
propriate multiples of Gini’s mean difference and the mean absolute deviation in the place of the general estimator
Wn.
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1 Introduction
In literature, purely sequential estimation methodolo-
gies date back to path-breaking papers of Anscombe
(1953), Ray (1957), and Chow and Robbins (1965).
They gave a solid foundation to establish purely se-
quential fixed-width confidence interval estimation
methodologies for an unknown normal mean µ when
the population variance σ2 remained unknown. In-
deed, Chow and Robbins (1965) brought forward the
fundamental nature of the theory of purely sequential
nonparametric fixed-width confidence interval estima-
tion methodologies.

The far reaching purely sequential minimum risk
point estimation methodology was originally put for-
ward by Robbins (1959). It was subsequently broad-
ened by Starr (1966) and Starr and Woodroofe (1969),
where asymptotic properties such as efficiency and
risk efficiency were summarized. Second-order prop-
erties were further studied in Woodroofe (1977).

Instead of using the customary sample variance
(or sample standard deviation) as an estimator of the
unknown parameter σ2 (or σ) in the stopping rules,
Sen and Ghosh (1981) considered nonparametric se-
quential point estimation based on U-statistics. They
concluded the asymptotic first-order efficiency and
risk efficiency as well as other elegant asymptotics.
As Mukhopadhyay (1982) used a broader class of
nonparametric estimators of σ2, Chattopadhyay and

Mukhopadhyay (2013), and Mukhopadhyay and Hu
(2017, 2018) recently looked into appropriate func-
tions of Gini’s Mean Difference (GMD) or Mean Ab-
solute Deviance (MAD) as possible substitutes of the
traditional sample variance (or sample standard devi-
ation).

The object of this paper is to revisit in depth
the purely sequential minimum risk point estimation
methodologies involving GMD or MAD established
in Mukhopadhyay and Hu (2017), Hu and Mukhopad-
hyay (2019) and Hu and Zhuang (2019). Having
proposed a new purely sequential methodology based
on nonparametric estimators with some certain con-
ditions satisfied, we develop asymptotic second-order
results which are considerably stronger than those
reported. The formulations of the newly proposed
methodology are presented in Section 2. The main
theorems are laid down in Section 3, along with sub-
stantial proofs. In Section 4, some illustrations are
provided followed by summaries from simulations
presented in Section 5. We end with more discussions
in Section 6.

2 Formulations

Assuming that we have a sequence of independent
observations X1, X2, ... from a N

(
µ, σ2

)
population

with −∞ < µ <∞ and 0 < σ <∞, both unknown.
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Having recorded X1, X2, ..., Xn, n ≥ 2, we denote
the customarily used unbiased estimator for µ by

Sample mean: Xn ≡ n−1Σn
i=1Xi,

and denote an appropriate consistent nonparametric
estimator for σ by Wn ≡ Wn(X1, ..., Xn), where the
sequence of {Wn, n ≥ 2} further satisfies the follow-
ing conditions:

(C1) Independence: Xn and {Wk : 2 ≤ k ≤ n} are
distributed independently for all n ≥ 2.

(C2) Convergence in probability:

Wn
Pµ,σ→ σ as n→∞.

(C3) Aysmptotic normality:

√
n
(
σ−1Wn − 1

) L→ N
(
0, δ2

)
as n→∞,

for some δ(> 0).

(C4) Uniform continuity in probability (u.c.i.p): For
every ε > 0, there exists a large ν ≡ ν(ε) and
small γ > 0 for which

Pµ,σ

(
max

0≤k≤nγ
|Wn+k −Wn| ≥ ε

)
< ε

holds for any n ≥ ν.

(C5) Kolmogorov’s inequality: For every ε > 0, and
some 2 ≤ n1 ≤ n2,

Pµ,σ

(
max

n1≤n≤n2

|Wn ≥ σ| ≥ ε
)

≤ ε−rEµ,σ [|Wn1 − σ|r] , with r ≥ 2.

(C6) Order of central absolute moments: For n ≥ 2
and r ≥ 2,

Eµ,σ [|Wn − σ|r] = O(n−r/2).

(C7) Wiener’s condition:

Eµ,σ
[
supn≥2Wn

]
<∞.

Now we are in a position to propose a new purely se-
quential minimum risk point estimation methodology
for an unknown normal mean based on Wn under a
widely-used loss function given by

Ln ≡ Ln
(
µ,Xn

)
= A

(
Xn − µ

)2
+ cn, (1)

where A(> 0) and c are both known. Here, A is an
appropriate weight function, c is the unit cost of each
observation, and n is the sample size. Associated with
the loss function in (1), we can write the risk function
as follows:

Rn (c) ≡ Eµ,σ
{
Ln
(
µ,Xn

)}
= Aσ2n−1 + cn, (2)

by minimizing which we obtain the optimal fixed sam-
ple size n∗ given by

n∗ ≡ n∗ (c) = σ
√
A/c, (3)

had σ been known. And we tacitly disregard the fact
that n∗ may not be an integer.

Beginning with the pilot data X1, X2, ..., Xm of
size m (≥ 2), we sample one additional observation
at a time sequentially as needed until we terminate ac-
cording to the following stopping rule:

N ≡ N (c)

= inf
{
n ≥ m : n ≥

√
A/c

(
Wn + n−λ

)}
,

(4)

where λ(> 1/2) is held fixed. That is, if we
have a pilot sample of size m such that m ≥√
A/c

(
Wm +m−λ

)
already holds, no additional

observations will be recorded and the final sample
size is N = m. Otherwise, we record one more
observation at a time and update n in the stop-
ping rule (4). We terminate the sampling proce-
dure at the first time that N = n (≥ m) is observed
such that n ≥

√
A/c

(
Wn + n−λ

)
. Finally with

{N,X1, ..., Xm, ..., XN}, we establish the minimum
risk point estimator for µ as follows:

XN ≡ N−1ΣN
i=1Xi. (5)

For the new class of sequential methodologies (4)-(5),
it is obvious that Pµ,σ (N <∞) = 1 and N ↑ ∞
w.p.1 as c ↓ 0.

3 Main Results

In this section, we lay down a number of main lemmas
and theorems associated with the new class of purely
sequential minimum risk point estimation methodolo-
gies given by (4)-(5). For the stopping timeN defined
in (4), for all fixed µ, σ, andA, we have the following:

Theorem 1 (Asymptotic First-Order Efficiency)
With n∗ defined by (3), we have

lim
c→0

Eµ,σ {N/n∗} = 1. (6)
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Proof: By the stopping rule defined in (4), we have
the following two inequalities

N ≥
√
A/c

(
WN +N−λ

)
, (7)

as well as

N < m+
√
A/c

(
WN−1 + (N − 1)−λ

)
, (8)

from which we conclude

WN +N−λ

σ
≤ N

n∗
<
WN−1 + (N − 1)−λ

σ
+
m

n∗
.

(9)

Then, it is clear that as c → 0, N/n∗
Pµ,σ→ 1 under

(C2). Also, we note that for some sufficiently small c,
the right-hand side of (9) can be bounded as follows:

0 ≤ N/n∗ < σ−1
(

sup
n
Wn + 1

)
+ 1. (10)

Under (C7) and by the dominated convergence theo-
rem, therefore, limc→0Eµ,σ[N/n∗] = 1 holds imme-
diately from (10). ut

Lemma 2 For any arbitrary 0 < η < 1, with r ≥ 2,
we have

Pµ,σ(N ≤ ηn∗) = O

(
n∗

− r
2(1+λ)

)
. (11)

Proof: Let [u] denote the largest integer that is smaller
than u and we define:

n1c = [(A/c)
1

2(1+λ) ] = O(c
− 1

2(1+λ) ),

and
n2c = ηn∗ = ησ

√
A/c.

Clearly, N ≥ n1c w.p.1 from the definition of N
in (4). Next, we set out to obtain the rate at which
Pµ,σ{N ≤ ηn∗} may converge to zero for small c:

Pµ,σ{N ≤ ηn∗}
≤ Pµ,σ {Wn ≤ ησ for some n s.t. n1c ≤ n ≤ n2c}

≤ Pµ,σ

{
max

n1c≤n≤n2c

|Wn − σ| ≥ (1− η)σ

}
≤ ((1− η)σ)−r Eµ,σ |Wn1c − σ|

r , by (C5)

= O
(
n
−r/2
1c

)
= O

(
n∗−r/(2(1+λ))

)
, by (C6).

The proof is complete. ut

Theorem 3 (Asymptotic First-Order Risk Efficiency)
Define Risk Efficiency to be ξ(c) = RN (c)/Rn∗(c).
Then, we have

lim
c→0

ξ(c) = 1. (12)

Proof: Under (C1), it is not hard to obtain that

Eµ,σ{n∗/N} = Eµ,σ{J1}+ Eµ,σ{J2}, (13)

where J1 = n∗

N I
(
N > 1

2n
∗), J2 = n∗

N I
(
N ≤ 1

2n
∗),

and I(A) stands for the indicator function of an event
A.

We observe that 0 < J1 < 2 and a bounded ran-

dom variable is uniformly integrable. Also, J1
Pµ,σ→ 1

as c → 0 in view of Theorem 1. Hence, Eµ,σ[J1] =
1 + o(1) as c→ 0. Next, we handle the term Eµ,σ[J2]
and use 2 under (C5) and (C6) to express:

Eµ,σ[J2] ≤ Eµ,σ

{
n∗

n1cI
(
N ≤ 1

2n
∗
)}

= O(n∗)O(n∗−1/(1+λ))O(n∗−r/2(1+λ))

= O
(
n
∗ 2λ−r
2(1+r)

)
→ 0, as c→ 0,

as long as we pick some appropriate r > max {2, 2λ}.
Hence, (12) holds. ut

Lemma 4 With n∗ defined by (3), we have

N∗ ≡ (N −n∗)/N1/2 L→ N(0, δ2), as c→ 0. (14)

Proof: We recall that N/n∗
Pµ,σ→ 1 as c → 0

under (C2). Having this settled, under (C3) and
(C4), Anscombe’s (1952) random central limit theo-
rem would imply:

n∗1/2(σ−1WN − 1)
L→ N(0, δ2), and

n∗1/2(σ−1WN−1 − 1)
L→ N(0, δ2) as c→ 0,

(15)

with δ2 coming from (C3). By Ghosh-Mukhopadhyay
theorem (1975) and Slutsky’s theorem, the result im-
mediately follows from (15).

Lemma 5 With n∗ defined by (3), we have that N∗2

is uniformly integrable for sufficiently small c ≤ c0
with some c0(> 0).

Proof: We proceed to prove this lemma in the spirit
of Ghosh and Mukhopadhyay (1980) and Ghosh et al.
(1997, Lemma 7.2.3, pp. 217-219) and shall first show
that (N−n∗)2/n∗ is uniformly integrable in c ≤ c0 so
that the desired result follows. Recall that [u] denotes
the largest integer that is smaller than u(> 0).

We may write for any b > b0 + 1, b0 =(
σ
√
A/c1

)−1/2
, where c1 is some appropriate con-

stant such that c ≤ c1. Then,

Eµ,σ

{
(N − n∗)2

n∗
I

(
(N − n∗)2

n∗
> b2

)}

= 2

∫ ∞
b

xPµ,σ

(
|N − n∗| > x

√
n∗
)

dx.

(16)
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Writing k1 =
[
n∗ + x

√
n∗
]

+ 1 with x ≥ b, we ob-
tain:

Pµ,σ

(
N > n∗ + x

√
n∗
)

≤ ≤ Pµ,σ
(
k1 − 1 ≤Wk1−1

√
A/c

)
≤ Pµ,σ

(
Wk1−1
σ

≥ n∗ + x
√
n∗ − 1

n∗

)
≤ Pµ,σ

(∣∣∣∣Wk1−1
σ

− 1

∣∣∣∣ ≥ x
√
n∗ − 1

n∗

)
≤

(
x√
n∗
− 1

n∗

)−2r1
Eµ,σ

{∣∣∣∣Wk1−1
σ

− 1

∣∣∣∣}2r1

.

Under (C6), we claim that there exists a λ1 (> 0) de-
pending only on r1 such that

Pµ,σ

(
N > n∗ + x

√
n∗
)

≤ λ1 (k1 − 1)−r1 n∗
r1
(
x− 1/

√
n∗
)−2r1

.
(17)

Note that (k1 − 1)−r1 n∗
r1 < 1, for x ≥ b > b0+1 =(

σ
√
A/c1

)−1/2
+ 1 and n∗ = σ

√
A/c ≥ σ

√
A/c1.

It follows that∫ ∞
b

xPµ,σ

(
|N − n∗| > x

√
n∗
)

dx

≤ λ1
∫ ∞
b

x (x− b0)−2r1 dx

= λ1
(b− b0)1−2r1 ((3− 2r1) b− b0)

(1− 2r1) (2− 2r1)
→ 0

(18)

as b→∞ by choosing r1 > 1 appropriately.
Next, note that if

√
n∗ ≤ b,∫ ∞

b
xPµ,σ

(
N − n∗ < −x

√
n∗
)

dx = 0.

If
√
n∗ > b, there exists some 0 < γ < 1 such that

(1− γ)
√
n∗ > b, when c ≤ c2, for some technically

picked c2. Then,∫ ∞
b

xPµ,σ

(
N − n∗ < −x

√
n∗
)

dx

≤
∫ √n∗

b
xPµ,σ (N ≤ γn∗) dx

+

∫ (1−γ)
√
n∗

b
xPµ,σ

(
γn∗ < N < n∗ − x

√
n∗
)

dx.

(19)

By Lemma 2, Pµ,σ (N ≤ γn∗) ≤ λ2n
∗
− r2

2(1+λ)
, for

some appropriate r2 (> 2 + 2λ) and λ2 (> 0) de-
pending on r2 alone. Hence,∫ √n∗

b
xPµ,σ (N ≤ γn∗) dx

≤ λ2b2−
r2

(1+λ) → 0 as b→∞.
(20)

As for b ≤ x ≤ (1− γ)
√
n∗, write

k2 = [γn∗] + 1 and k3 =
[
n∗ − x

√
n∗
]
.

We have that

Pµ,σ

(
γn∗ < N < n∗ − x

√
n∗
)

= Pµ,σ

 k3⋃
n=k2

{N = n}


≤ Pµ,σ

 k3⋃
n=k2

{
Wn

σ
<

n

n∗

} .

(21)

Note that for a small c, say c ≤ c3, for some c3,

n

n∗
≤ k3
n∗
≤ n∗ − x

√
n∗

n∗
= 1− x√

n∗
.

Hence, it follows from (21) that

Pµ,σ

(
γn∗ < N < n∗ − x

√
n∗
)

≤ Pµ,σ
(
Wn

σ
− 1 < − x√

n∗
, for some k2 ≤ n ≤ k3

)
≤ Pµ,σ

(∣∣∣∣Wn

σ
− 1

∣∣∣∣ > x√
n∗
, for some k2 ≤ n ≤ k3

)
≤ Pµ,σ

(
max

k2≤n≤k3

∣∣∣∣Wn

σ
− 1

∣∣∣∣ > x√
n∗

)

≤
Eµ,σ

∣∣∣Wk2−1

σ − 1
∣∣∣2r3(

x/
√
n∗
)2r3

≤ λ3k−r32 x−2r3n∗
r3 ≤ λ4x−2r3 ,

(22)

for some appropriate λ3 (> 0) and λ4 (> 0), both de-
pending only on r3. Choosing r3 > 1, we get from
(22) that∫ (1−γ)

√
n∗

b
xPµ,σ

(
γn∗ < N < n∗ − x

√
n∗
)

dx

≤ λ4
∫ (1−γ)

√
n∗

b
x1−2

r3 dx ≤ λ4
2− 2r3

b2−2r3 → 0

(23)
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as b→∞.
Now choosing c0 = min {c1, c2, c3}, with (18),

(20) and (23), we can prove the uniform integrability
of (N − n∗)2 /n∗ in c ≤ c0. To complete the proof of
the lemma, observe that

Eµ,σ

{
(N − n∗)2

n∗
I

(
(N − n∗)2

N
> b2

)

× I

(
N >

1

2
n∗
)}

≤ 2Eµ,σ

{
(N − n∗)2

n∗
I

(
(N − n∗)2 > 1

2
b2n∗

)}
→ 0 as b→∞ uniformly in c ≤ c0.

(24)

Furthermore, choosing b > n∗, it follows that for c ≤
c0,

Eµ,σ

{
(N − n∗)2

n∗
I

(
(N − n∗)2

N
> b2

)

× I

(
N ≤ 1

2
n∗
)}

≤ m−1n∗2Pµ,σ
(
N ≤ 1

2
n∗
)
≤ λ5n∗

2−r4 ≤ λ5b2−r4

→ 0 as b→∞,
(25)

with r4(> 2) chosen appropriately and some λ5 (> 0)
depending only on r4. In view of (24) and (25), the
intended result holds. ut

Following from Lemma 4 and Lemma 5, we
now proceed with the asymptotic second-order regret
property of the purely sequential MRPE methodology
from (4)-(5), given in the theorem below.

Theorem 6 (Asymptotic Second-Order Regret)
Define Regret to be ω(c) = RN (c) − Rn∗ (c). We
have as c→ 0 :

ω(c) = δ2c+ o(c), (26)

with δ2 coming from (C3).

4 Illustrations

In this Section, we provide possible applications with
Wn in the stopping rule (4) substituted by Sample
standrad deviation, Gini’s Mean Difference (GMD),
and Mean Absolute Deviance (MAD), respectively.
Corresponding asymptotically second-order regret

purely sequential point estimation methodologies are
proposed thereby.

(a) Sample standard deviation. A customar-
ily used unbiased estimator for the unknown normal
mean is the sample variance, denoted by S2

n, where

S2
n = (n− 1)−1Σn

i=1(Xi −Xn)2.

Naturally, the sample standard deviation Sn is used to
estimate the population standard deviation σ. Hence,
we consider to substitute Wn with Sn and propose the
sequential methodology with the following stopping
boundary condition:

N0 ≡ N0(c)

= inf
{
n ≥ m : n ≥

√
A/c

(
Sn + n−λ

)}
.

(27)

Clearly, conditions (C1)-(C7) are all satisfied in
terms of Sn, so we develop the regret approximation:

ω0 (c) =
1

2
c+ o (c) as c→ 0, (28)

as a fact of that

√
n (Sn/σ − 1)

L→ N

(
0,

1

2

)
as n→∞.

One may see Mukhopadhyay and de Silva (2009) and
other sources for reference.

(b) Gini’s Mean Difference (GMD). As a ro-
bust estimator of the population standard deviation σ,
GMD is originally developed in Gini (1914, 1921),
defined as follows:

gn =

(
n

2

)−1
ΣΣ1≤i<j≤n |Xi −Xj | . (29)

Under the normal assumption, we can accordingly
construct the unbiased and consistent estimator based
on GMD denoted by Gn, where

Gn =

√
π

2
gn. (30)

One should notice that Gn is indeed a U-Statistic.
As a result, conditions (C1)-(C7) automatically hold.
See Hoeffding (1948, 1961), Sen and Ghosh (1981),
Lee (1990), Mukhopadhyay and Hu (2017, 2018), Hu
and Mukhopadhyay (2019) and etc. for more details.
Thus, we consider the following stopping rule:

N1 ≡ N1(c)

= inf
{
n ≥ m : n ≥

√
A/c

(
Gn + n−λ

)}
.

(31)
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With the fact that

√
n (Gn/σ − 1)

L→ N

(
0,
π + 6

√
3− 12

3

)

as n→∞, we conclude the asymptotic second-order
regret below:

ω2(c) =
π + 6

√
3− 12

3
c+ o (c) as c→ 0. (32)

(c) Mean Absolute Deviance (MAD). MAD is an-
other robust estimator for σ as a counterpart of the tra-
ditional sample standard deviation. Denoted by mn,
MAD is defined as follows:

mn = n−1Σn
i=1

∣∣Xi −Xn

∣∣ . (33)

Again we construct the unbiased and consistent esti-
mator for σ given below:

Mn =

√
πn

2 (n− 1)
mn. (34)

To verify (C1)-(C7), one may refer to Babu and
Rao (1992), Mukhopadhyay and Hu (2017, 2018) and
Hu and Mukhopadhyay (2019). Hence, we substitute
Wn withMn and develop the purely sequential MRPE
methodology with the stopping rule given by

N2 ≡ N2(c)

= inf
{
n ≥ m : n ≥

√
A/c

(
Mn + n−λ

)}
.

(35)

Based on the result that

√
n (Mn/σ − 1)

L→ N

(
0,
π − 2

2

)
as n→∞,

we claim that the corresponding regret approximation
is

ω2 (c) =
π − 2

2
c+ o (c) as c→ 0. (36)

5 Simulations

In the spirit of Mukhopadhyay and Hu (2017), we
implement the purely sequential minimum risk point
estimation methodologies based on various stopping
rules given by (27), (31), and (35) respectively in the
normal case. To be more specific, we generate pseu-
dorandom samples from a N (5, 4) population; and
we also fix the weight function A = 100, the pilot
sample size m = 10, and λ = 2, while selecting a
wide range of values of c including 0.16, 0.04, 0.01,
and 0.025 so that the optimal sample sizes n∗ can be
determined to be 50, 100, 200, and 400 accordingly by

Table 1: Simulations from N(5, 4) with A = 100,
m = 10 and λ = 2 under 1000 runs

n∗ 100c i n s (n) ξ̂ ω̂/c

50 16 0 50.01 0.167 0.988 0.593
1 50.31 0.170 0.988 0.612
2 50.26 0.178 0.987 0.666

100 4 0 99.95 0.241 0.993 0.600
1 100.33 0.235 0.994 0.561
2 100.33 0.249 0.994 0.636

200 1 0 200.01 0.332 0.997 0.561
1 200.25 0.338 0.997 0.580
2 200.03 0.356 0.996 0.644

400 0.25 0 399.93 0.459 0.998 0.531
1 400.28 0.451 0.998 0.514
2 400.23 0.487 0.998 0.599

(3). Throughout the section, we are using the follow-
ing system codes to indicate each specific methodol-
ogy under implementation:

i = 0 : Sn-based stopping rule (27);
i = 1 : Gn-based stopping rule (31);
i = 2 : Mn-based stopping rule (35).

Table 1 presents the simulated performance under
1000 independent replications of runs. As reflected in
the table, the average of estimated sample sizes are
close to the optimal sample size. Furthermore, all the
sequential methodologies (27), (31), and (35) enjoy
the asymptotic second-order regret, and the estimated
regrets provided in the last column are comparable to
the theoretical values given in (28), (32), and (36), re-
spectively for i = 0, 1, 2.

6 Saving Sampling Operations

Not surprisingly, the purely sequential sampling
methodologies require a lot of sampling operations,
which may put a damper. As is pointed out in Hu and
Zhuang (2019), we can accelerate the proposed new
class of purely sequential MRPE methodologies with-
out sacrificing the first- and second-order properties in
two directions: (i) to sample k(≥ 2) observations in-
stead of one observation at-a-time successively; (ii) to
proceed purely sequential sampling to determine only
a proportion ρ(0 < ρ < 1) of the desired final sam-
ple, followed by a batch of the remaining observations
gathered in one step. Combining these ideas, we ex-
pect to save roughly 100(1−k−1ρ)% of sampling op-
erations.
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Therefore, we proposed a class of accelerated se-
quential MRPE methodologies accordingly. Given the
pilot sample size m ≥ 2, and the prefixed quantities
0 < ρ ≤ 1 and k ≥ 1, we develop the following
stopping rule:

T1 ≡T1(c) = inf {n ≥ 0 : m+ kn

≥ ρ
√
A/c

(
Wm+kn + (m+ kn)−λ

)
},

(37)

and the final sample size is given by

T2 ≡ T2(c) = [ρ−1(m+ kT ) + 1], (38)

where [u] continues to represent the largest integer
smaller than u(> 0).

Apparently, Pµ,σ(T2 < ∞) = 1 and T2 ↑ ∞
w.p.1 as c ↓ 0. Now, we are in a position to provide the
following crucial results, as summarized in Theorem
7.

Theorem 7 Define Risk Efficiency and Regret associ-
ated with the accelerated sequential MRPE method-
ologies (37)-(38) to be ξ∗(c) = RT2(c)/Rn∗(c) and
ω∗(c) = RT2(c)−Rn∗(c), respectively. We have

(i) Asymptotic First-Order Efficiency:

lim
c→0

Eµ,σ[T2/n
∗] = 1. (39)

(ii) Asymptotic First-Order Risk Efficiency:

lim
c→0

ξ∗(c) = 1. (40)

(iii) Asymptotic Second-Order Regret:

ω∗(c) = ρ−1δ2c+ o(c) as c→ 0, (41)

where δ2 coming from (C3).

The proof of Theorem 7 can be done in a sim-
ilar way as we proved Theorems 1-6. We leave out
many details for brevity. It is worth mentioning that it
should surprise no one that ω∗(c) in (41) is larger than
ω(c) in (26). The increased regret under accelerated
sequential sampling is a straight result of saving sam-
pling operations. One should balance the operational
convenience and the increased regret for practical pur-
poses.
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